Aussie Suzuki, PhD

Position title: Assistant Professor, Department of Oncology/McArdle Laboratory for Cancer Research


Phone: 608-262-1686

6533 Wisconsin Institutes for Medical Research II,
1111 Highland Ave, Madison, WI 53705

Lab Website
Suzuki Lab
Aussie Suzuki

Research Interest

Kinetochore/Centromere Integrity and Cancer

The Suzuki laboratory focuses on elucidating the molecular mechanisms underlying kinetochore functions in cell division. The kinetochore is a macro-molecular protein complex on centromeric chromatin, and it ensures the integrity of chromosome segregation. Kinetochore dysfunction causes chromosomal instability, which leads to carcinogenesis and developmental defects. Kinetochore functions include microtubule assembly, chromosome movements, mitotic checkpoint control, and error correction; however, molecular mechanisms of these functions remain unclear. In order to reveal those mechanisms, our laboratory uses advanced light and electron microscopy techniques. Our techniques include quantitative confocal microscopy to measure cellular protein copy number, light-sheet microscopy for high spatial/temporal live cell imaging, various super-resolution microscopes (SIM/STORM/STED) for nm-scale analysis, FRET-based tension biosensor, FRAP/TIRF system for cellular protein dynamics, and immuno-electron microscopy.

Honors & Awards

2018 New Investigator Program, Wisconsin Partnership Program

2017 Leading Initiative for Excellent Young Researchers (LEADER) Award FY2017, MEXT

2016 The Postdoctoral Award for Research Excellence from the University of North Carolina

2012-2014 JSPS Postdoctoral Research Fellow

2012 Kazato Research Encouragement Prize

2011-2012 The Uehara Memorial Foundation Research Postdoctoral Fellow

2007 Long-term Research Fellowship for Overseas Education from the Graduate University for Advanced Studies

2007 Cancer Collaboration Research Award for Young Scientists from MEXT

2006 Cancer Collaboration Research Award for Young Scientists from MEXT

Selected Publications

(Find further publications on PubMed:

  • Suzuki, A., Gupta, A., Long, SK., Evans, R., Badger, BL., Salmon, ED., Biggins, S., Bloom, K. A kinesin-5, Cin8, recruits protein phosphatase 1 to kinetochores and regulates chromosome segregation. Current Biology, 28 (17), 2697-2704, (2018).
  • Bonacci, T., Suzuki, A., Grant, GD., Stanley, N., Cook, JG., Brown, NG., Emanuele M. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO journal, 37 (16), 1-17, (2018).
  • Fadero, TC., Gerbich, TM., Rana, K., Suzuki, A., DiSalvo, M., Schaefer, K., Heppert, JK., Boothby, TC., Goldstein, B., Peifer, M., Allbritton, NL., Gladfelter, AS., Maddox, AS., Maddox, PS. LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching. Journal of Cell Biology, 217 (5), 1869-1882, (2018).
  • Suzuki, A., Long, SK., Salmon, ED. An Optimized Method for 3D Fluorescence Co-Localization Applied to Human Kinetochore Protein Architecture. eLife, 7, (2018).
  • Takada, M., Zhang, W., Suzuki, A., Kuroda, TS., Yu, Z., Inuzuka, H., Gao, D., Wan, L., Zhuang, M., Zhai, B., Fry, CJ., Bloom, K., Li, G., Karpen, GH., Wei, W., Zhang, Q. FBW7 Loss Promotes Chromosomal Instability and Tumorgenesis via Cyclin E1/CDK2-Mediated Phosphorylation of CENP-A. Cancer Research, 77 (18), 4881-4893, (2017).
  • Lera, RF., Potts, GK., Suzuki, A., Johnston, JM., Salmon, ED., Coon, JJ., Burkard, ME. Decoding Polo-like kinase 1 signaling along the kinetochore-centromere axis. Nature Chemical Biology, 12 (6), 411-418, (2016).
  • Suzuki, A., Badger, BL., Haase, J., Ohashi, T., Erickson, HP., Salmon ED., Bloom, K. How the kinetochore couples microtubule force and centromere stretch to move chromosomes. Nature Cell Biology, 18 (4), 382-392, (2016).
  • Pilaz LJ., McMahon, J., Miller EE., Lennox, AL., Suzuki, A., Salmon, ED., Silver DL. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron, 89 (1), 83-99, (2016).
  • Suzuki, A., Badger, BL., Salmon, ED. A Quantitative Description of Ndc80 Complex Linkage to Human Kinetochores. Nature Communications, 6, 8161, (2015)
  • Suzuki, A., Badger, BL., Wan, X., DeLuca, JG., Salmon, ED. The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper Intrakinetochore stretch. Developmental Cell, 30 (6), 717-730, (2014).
  • Nishino, T., Takeuchi, K., Gascoigne, KE., Suzuki, A., Hori, T., Oyama, T., Morikawa, K., Cheeseman, IM., Fukagawa, T. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell, 148 (3), 487-501, (2012).
  • Gascoigne, KE., Takeuchi, K., Suzuki, A., Hori, T., Fukagawa, T., Cheeseman, IM. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell, 145 (3), 410-422, (2011).
  • Suzuki, A., Hori, T., Nishino, T., Usukura, J., Miyagi, A., Morikawa, K., Fukagawa, T. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. Journal of Cell Biology, 193 (1), 125-140, (2011).
  • Amano, M.#, Suzuki, A. #, Hori, T. #, Backer, C., Okawa, K., Cheeseman, IM., Fukagawa, T. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. Journal of Cell Biology, 186 (2), 173-182, (2009). (# Co-first authors)
  • Hori, T., Amano, M., Suzuki, A., Backer, CB., Welburn, JP., Dong, Y., McEwen, BF., Shang, WH., Suzuki, E., Okawa, K., Cheeseman, IM., Fukagawa, T. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell, 135 (6), 1039-1052, (2008).